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Multiscaling of noise-induced parametric instability

R. Zillmer* and A. Pikovsky
Department of Physics, Potsdam University, Potsdam, Germany

~Received 10 March 2003; published 27 June 2003!

We describe the statistical properties of growth rates of a linear oscillator driven by a parametric noise. We
show that in general the fluctuations of local Lyapunov exponents are non-Gaussian and demonstrate multi-
scaling. Analytical calculations of the generalized Lyapunov exponents are complemented with approximative
and numerical results; this allows us to identify the parameter range where the deviations from the Gaussian
statistics become important.
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I. INTRODUCTION

In spite of recent progress in the studies of noise-indu
dynamics, many simple models elude complete analytical
lution. In this paper we investigate the dimensionle
random-driven linear oscillator model

ẍ1@E1j~ t !#x50, ^j~ t !&50,

^j~ t !j~ t8!&52s2d~ t2t8!, ~1!

with the Gaussian white noisej(t). This simple model,
which is not exactly solvable in the statistical sense, fin
applications in various fields of physics.

~1! In the theory of Anderson localization one interprett
as a spatial coordinate; then Eq.~1! is the one-dimensiona
stationary Schro¨dinger equation for a single particle in
d-correlated potentialj. The parameterE is the energy ei-
genvalue; it can be either positive or negative, where ne
tive values correspond to the band gap. Although, stric
speaking, one should consider Eq.~1! with two boundary
conditionsuxu→0 at t→6`, the usual approach is to trea
Eq. ~1! as an initial-value problem and to look at the grow
rate of the variablex as t→` ~see@1,2,16# for details!. The
growth rate gives the localization length, and fluctuations
x(t) are important for the description of conductance flu
tuations in finite samples.

~2! In the theory of parametric resonance one assumes
parameterE to be positive and interprets it as the square
the oscillator frequency, whilej describes frequency fluctua
tions. The oscillationsx(t) grow due to the noisy pump an
the growth rate of different moments is of major intere
Usually, the oscillator has linear damping described by
term 2g ẋ; such an equation can be transformed to Eq.~1! by
virtue of the transformationx→e2gty, E→E2g2.

~3! In Refs. @3–5# a geometrical approach to calculatio
of the largest Lyapunov exponent in high-dimension
Hamiltonian systems was suggested. This approach lead
Eq. ~1!, wherex(t) is the amplitude of a small perturbation
E is the mean curvature of the potential energy~it can be of
either sign!, andj describes chaotic fluctuations of the cu
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vature. The growth rate ofx(t) thus gives an estimate of th
Lyapunov exponent of Hamiltonian chaos.

In all applications the growth rate of the oscillationsx(t)
is of major interest. When this rate describes the growth
small perturbations, as in the last example above, it is un
stood that nearby trajectories evolve with the same real
tion of the noise~see @6# for a detailed discussion of thi
problem!. This is consistent with the ususal definition of th
Lyapunov exponent, which also gives the correct interpre
tion as the inverse of the localization length.

Generally, one cannot characterize the growth rate wit
single number, so one speaks of multiscaling. This prope
can be characterized in a twofold way. On one hand it
possible to characterize the fluctuations of the exponen
growth with the local~finite-time! Lyapunov exponent intro-
duced asl(t)5(2t)21 ln(x21ẋ2). Then one describes multi
scaling in terms of the corresponding probability dens
P(l;t). Recently it has been shown@7#, that for values ofE
close to zero the distribution ofl(t) deviates from the
Gaussian form, leading to nonvanishing higher cumula
Thus the usual Lyapunov exponent alone is not sufficient
statistical characterization ofx(t) for large times. This is
why we treat the problem with the help of generaliz
Lyapunov exponents, corresponding to the growth rates
different moments of the fieldx. In the presence of multiscal
ing these growth rates are different, which gives a comp
mentary characterization. Our main goal in this paper is
define the range of parametersE,s where multiscaling is
essential and to relate the asymptotical scaling of the ge
alized exponents to the form of the tails of the dens
P(l;t).

This paper is organized in the following way. In the ne
section we introduce the generalized Lyapunov expone
and perform a time rescaling, which leaves a noise renorm
ized frequency as the sole relevant parameter. We re
some known properties of the Lyapunov exponent of
random oscillator, which we supplement with results f
negative frequencyE. The non-Gaussian properties of th
distribution of the local Lyapunov exponent are treated
Sec. IV, using numerical results and some analytical e
mates.

II. GENERALIZED LYAPUNOV EXPONENTS

A. Definition of Lyapunov exponents

We start with the definition of quantities that character
the growth of oscillations in our basic model.
©2003 The American Physical Society17-1
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The fluctuations in Eq.~1! lead to an exponential~on

average! growth of the amplitude:A5Ax21 ẋ2;exp(Lt).
Because of the similarity to linearized equations for t
growth of small perturbations in chaotic systems, the ex
nent L is called the Lyapunov exponent~LE!. The local
~finite-time! LE is defined as

l~ t !5
1

t
ln A~ t !; ~2!

it converges to the LE as time tends to infinity and is
self-averaged quantity:

l~ t ! →
t→`

L5 K d

dt
ln AL .

Due to fluctuations ofl(t) the growth rate of the moment
of A generally differs fromL. It is possible to characteriz
these fluctuations with the help of the generalized Lyapu
exponents@8#, defined as the growth rates of the moments
the amplitude:

L~q!5
1

q
lim
t→`

1

t
ln^Aq~ t !&. ~3!

This definition includes the usual LE as a special caseL
5 limq→0L(q). Numerically, L is easier to calculate, be
causel(t) becomes a nonrandom quantity for larget @2#.
Generally, allL(q) are different and are necessary to ch
acterize the growth of oscillations, as is discussed below
Sec. II C.

B. Analytic expressions for LEs

Remarkably, generalized LEs forq50,2,4,6, . . . can be
found analytically~see, e.g.,@1,15#!.

In the caseq50 we have the usual LE, which can b
calculated as follows. With the ansatzy5 ẋ/x5d ln x/dt one
reduces Eq.~1! to the first-order nonlinear Langevin-typ
equation

ẏ52y22j~ t !2E.
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Herey, after reaching2`, is reinjected at1`, which cor-
responds to a zero crossing ofx(t). The next step is the
application of the Fokker-Planck theory: for the distributio
of y one can write the Fokker-Planck equation and find
stationary solution~which, of course, is a solution with a
constant probability flow!:

%~y!5
1

Aps4/3

e2y3/3s22Ey/s2E
2`

y

ex3/3s21Ex/s2
dx

E
0

`

x21/2e2x3/122Ex/s4/3
dx

.

Averaging ^y& using this solution yields the following ex
pression for the LE:

L5^y&5
s2/3

2

E
0

`

x1/2e2x3/122Ex/s4/3
dx

E
0

`

x21/2e2x3/122Ex/s4/3
dx

. ~4!

For q52,4,6, . . . another analytical approach can b
used. Because Eq.~1! is a linear stochastic equation, th
evolution of the moments of orderq of the type^xq2kẋk&
leads to a closed linear system of equations. The latter ca
derived as follows~another way to derive this system is pr
sented in@7#!. Consider the temporal derivative of the m
ment expressed in terms of Eq.~1!:

d

dt
^xq2kẋk&5~q2k!^xq2k21ẋk11&2kE^xq2k11ẋk21&

2k^j~ t !xq2k11ẋk21&.

The averaging of the last term can be carried out by using
Furutsu-Novikov formula,

k^j~ t !xq2k11ẋk21&52k~k21!s2^xq2k12ẋk22&,

thus establishing a closed system for the evolution of thq
11 moments^xq2kẋk&. This system of equations can b
expressed with the help of a sparse matrix
t

1
0 q 0 0

2E 0 q21 0 �

2s2 22E 0 q22 �

0 233s2 23E 0 �

� � � �

0 2 0

~12q!E 0 1

~q21!qs2 2qE 0

2 , ~5!

whose eigenvalue with the largest real part determines the exponential growth of the moments of orderq. By definition~3! the
generalized LEL(q) for evenq is thus equal to this eigenvalue divided byq ~for oddq^xq&5” ^uxqu& and this approach does no
provide the LE!.
7-2
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In the simplest case ofq52 the generalized LEL(2) is a solution of the cubic equationg31Eg20.5s250:

L~2!55
222/3s2/3F F11A11S 42/3E

3s4/3D 3G 1/3

2
42/3E

3s4/3F 11A11S 42/3E

3s4/3D 3G 1/3G if
E

s4/3
>2

3

42/3

2AuEu

3
cosF1

3
arctanAS 42/3uEu

3s4/3 D 3

21G if
E

s4/3
,2

3

42/3
.

~6!
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For largerq one has to find the roots of the correspondi
polynomial of orderq11 numerically, but this is a straight
forward task.

C. Multiscaling in terms of LEs

As follows from the analytic expressions for the gener
ized LEs above, they are in general different, which me
multiscaling. Here we recall the relation between the gen
alized LEs and the fluctuations of the usual LE, which a
described by the probability densityP(l;t). Using Eq.~2!
we can writeA(t)5exp@tl(t)#, thus the cumulantsKq(t) of
the random processl(t) can be related to the moments
A(t):

^Aq~ t !&5^exp@ql~ t !t#&5expF(
1

`
qntn

n!
Kn~ t !G .

The first two cumulants, which correspond to the mean
the variance ofl(t), respectively, scale for large times a
follows:

K1~ t !5^l~ t !& →
t→`

L, K2~ t !5^@l~ t !2L#2& →
t→`

D/t

with the diffusion constantD. The variance vanishes fo
large t in accordance with the self-averaging property of t
local LE. Hence, by definition~3!, the generalized LE is the
asymptotic cumulant-generating function ofP(l;t):

L~q!5 lim
t→`

(
1

`
qn21tn21

n!
Kn~ t !

5 L1
q

2
D1 lim

t→`
(

3

`
qn21tn21

n!
Kn~ t !. ~7!

This is just the Taylor expansion ofL(q) aroundq50 with
coefficients related to the cumulants of the local LE.

Now let us demonstrate a more direct connection betw
L(q) andP(l;t). For t@1 the probability densityP(l;t) of
the local LE can be written in the scaling form exp@2tf(l)#
@9,14#, where the entropy functionf (l) is connected with
the generalized LE via a Legendre transformation@2,10#:
06111
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f ~l!5ql2qL~q!,
d

dq
qL~q!5l. ~8!

The expansion of the entropy function aroundl5L is f
'(l2L)2/2D, which yields a Gaussian distribution of th
local LE. In the tails, however, deviations from the Gauss
will generally appear. In case the Gaussian approxima
holds, higher cumulants (n>3) vanish:

L~q!5L1
Dq

2
. ~9!

Then all generalized LEs are fully determined by two co
ficientsL andD @or, equivalently, byL andL(2)] andthis
situation can be characterized as ‘‘monoscaling.’’ Howev
we will show below that for the noise-driven oscillator~1!
this holds only foruEu@s4/3.

D. Parameter scaling

Before proceeding with the detailed analysis of the LE
we explore the scaling dependence on the parametersE,s.
The analytical expressions~4! and ~6! suggest the scaling
relation L(q)5s2/3f q(Es24/3). To show that this scaling
holds for all the exponentsL(q) we perform the time rescal
ing t5(uEu/s2)t in Eq. ~1!, whereupon it can be written in
the following form:

ẍ1F S E

s4/3D 3

1S uEu

s4/3D 3/2

h~t!Gx50,

^h~t!h~t8!&52d~t2t8!. ~10!

The LEs determined by Eq.~10! obviously depend only on
the parameter«[Es24/3 asL̄(q,«). Returning back to time
t we have to reset the time scale by multiplying these ex
nents bys2/uEu; this gives for the LEs

L~q,E,s!5s2/3
s4/3

uEu
L̄~q,«![s2/3L̃~q,«!. ~11!

The essential behavior is presented by the exponentsL̃(q,«);
thus throughout the rest of the paper this quantity is exa
ined. For simplicity we will omit the tilde in the following;
7-3
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relation to previous formulas can be achieved by insertin«
instead ofEs24/3 in the corresponding expressions~4! and
~6!.

III. GAUSSIAN SCALING FOR LARGE VALUES OF z«z

In this section we demonstrate, using approximate me
ods, that for largeu«u the Gaussian approximation to th
distribution of the local LE or, equivalently, Eq.~9! holds.

A. Large positive values of«

For positive« a standard transformation to amplitude a
phase variables can be made:x5A sinc, ẋ5A«A cosc. The
equations of motion then become

ċ~ t !5A«1
1

A«
j~ t !sin2c, Ȧq~ t !52

q

2A«
j~ t !Aq sin 2c,

~12!

where the equation for the amplitude has been generalize
the equation for itsqth power. Withu5 ln A the largest LE is
given by

L5^u̇&52
1

2A«
^j~ t !sin 2c&, ~13!

where the averaging is accomplished with the stationary
tribution of c.

For large positive« the deterministic phase velocityA« in
Eq. ~12! dominates over the typical diffusion rate 2/«. Thus
for «3/2@1 the probability density of the phase becomes u
form in the interval@0,2p# and averaging the correspondin
Fokker-Planck equation overc yields the evolution of the
reduced probability density%(u,t) @1#:

%̇~u,t !5F2
1

4«
]u1

1

8«
]uuG%~u,t !.
06111
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This is equivalent to simple Brownian motion with a co
stant drift 1/4«. Henceu is normally distributed and for the
exponents we have

L5
1

4«
, L~q!5S 11

q

2DL→D5L. ~14!

The last statement is known as single parameter scaling
distribution of the local LE being determined by its me
value alone. If one considers the parametric oscillator~1! as
a continuous approximation to the discrete Anderson mo
for large wavelengths, i.e., around the lower band edge, t
negative« corresponds to the band gap of the Anders
model, the band edge being located at«50. Increasing posi-
tive « translates to an approach to the band center wh
single parameter scaling is known to exist. This property
been widely discussed in the context of Anderson locali
tion @11–13#.

B. Large negative values of«

For negative« one can transform to the eigenvectors
the noiseless system:x5 x̃1 ỹ, ẋ5u«u1/2( x̃2 ỹ); whereupon
the equations of motion become

x85u«u1/2x̃1
1

2u«u1/2
j~ t !~ x̃1 ỹ!,

y852u«u1/2ỹ2
1

2u«u1/2
j~ t !~ x̃1 ỹ!.

For largeu«u3/2 the damping (;u«u1/2) of ỹ dominates over
the fluctuations (;1/u«u); thus ỹ can be neglected compare
to x̃ in the equation forx8 . Hence the time evolution ofu
5 lnux̃u is given by

u̇5u«u1/21
1

2u«u1/2
j~ t !,
line
FIG. 1. ~a! Diffusion constantD as a function of the frequency«; s251. The diamonds show the numerical result whereas the solid
depicts the Gaussian presumptionD5L(2)2L. ~b! Numerical result for the limiting cumulant limt→`K3 /t2; the dashed line is to improve
readability.
7-4



E

w

la
en
d
ts

nt
ia
l-

,
d
d

o Eq.
e
n.

hav-

e
-

al

MULTISCALING OF NOISE-INDUCED PARAMETRIC . . . PHYSICAL REVIEW E 67, 061117 ~2003!
which again leads to Gaussian distribution of the local L
the latter given for large times byu/t. For the generalized
Lyapunov exponents we obtain

L5u«u1/2, L~q!5u«u1/21
q

2u«u
'u«u1/2. ~15!

Here there is no single parameter scaling~14! becauseD
5L22. Notice that in both cases,«.0 and «,0, the
asymptotic results are obtained foru«u3/2@1.

IV. NON-GAUSSIAN FLUCTUATIONS

A. Parameter range of non-Gaussian fluctuations

We have demonstrated that for largeu«u the distribution of
local LEs is nearly Gaussian. Next, we would like to sho
that this does not hold for smallu«u ~see also@7#!, with two
numerical tests regarding the second and the third cumu

Suppose that the local LE is normally distributed. Th
the whole set of generalized LEs can be expressed, accor
to Eq. ~9!, in terms of the analytically known exponen
L,L(2):

L~q!5L1
D

2
q5L1

q

2
@L~2!2L#. ~16!

In particular, the diffusion constantD equalsL(2)2L and
the third cumulantK3 in expansion~7! vanishes.

In Fig. 1~a! the numerically computed diffusion consta
for the noise-driven oscillator is compared with the Gauss
assumption~16!, indicating that there are deviations for va
ues of« close to zero. The coefficient limt→`K3 /t2 of the
cumulant expansion~7! is plotted in Fig. 1~b!. It is clearly
different from zero for smallu«u.

These results suggest that in the intermediate regimeu«u
&1, the linear form ofL(q) is not correct. This is elucidate
by writing the local LE explicitly in terms of amplitude an
phase@compare Eq.~13!#:
06111
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l~ t !52
1

2A«t
E

0

t

j~t!sin 2c~t!dt. ~17!

Because the noise and the phase are coupled according t
~12!, the processj(t)sin2c(t) resembles Gaussian whit
noise only for«3/2@1, as was shown in the previous sectio
In terms of the localization theory the point«50 corre-
sponds to the band edge, where indeed a complicated be
ior of the corresponding distributions is expected@11–13#.

Taking into account that the limiting results~14! and~15!
are obtained foru«u3/2@1, we assume hypothetically that th
relevant scale variable is given byu«u3/2 and hence the cu
mulants of the densityP(l;t) vanish for largeu«u as

Kn;S 1

u«u3/2D n

for n>3. ~18!

FIG. 2. qL(q) vs « for values ofq increasing fromq54 at the
bottom to q520 at the top. The solid lines show the numeric
result, the dashed lines the parabolic approximation~16!. The
thresholdq/u«u3/250.4 is marked by the circles.
FIG. 3. ln@qL(q)# vs lnq ~dot-dashed! for «5210 ~a! and«510 ~b!. The solid lines are numerical derivatives;d ln@qL(q)#/d ln q; the
dashed lines correspond toa51.28 anda51.38, respectively.
7-5
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Then the expansion~7! is a power series in the paramet
q/u«u3/2. According to this assumption, the generalized
L(q) deviates from the Gaussian value~16! when this pa-
rameter is large.

To test this numerically, we show in Fig. 2 the exact ge
eralized LEs together with the Gaussian approximation~16!,
as a function of« for several values of the parameterq. The
indicated thresholdq/u«u3/250.4 well divides the region of
agreement between the correct value and the approxima
from the region where these values strongly disagree,
confirming our hypothesis.

B. Asymptotic scaling of generalized LEs

In this section we study the asymptotic behavior of ge
eralized LEs for largeq. This problem can be formulated a
the problem of asymptotic properties of the eigenvalues
the matrix~5! asq→`. We expect the scaling to be a pow
law

L~q!;qa21, a~«!P~1,2!. ~19!

Because the largest element of the matrix~5! scales asq2 for
largeq,L(q);q sets an upper limit to the scaling~19!. The
numerical results presented in Fig. 3 for two values of« give
a51.28 for«5210 anda51.38 for«510.

The fact that asymptoticallya,2 means that the tails o
the distribution of the local LE are suppressed in compari
to the Gaussian form. Indeed, by virtue of the Legen
transformation~8!, the scaling ofL(q) for largeq translates
into a scaling of the entropy functionf (l) for l@1:

f ~l!;~a21!S l

a D a/(a21)

for l@1. ~20!

The linear form~16! would givea52, i.e., a Gaussian form
of P(l;t). Fora,2, however,f (l) obeys a power law with
an exponenta/(a21).2; i.e., P(l;t) decays faster than
the Gaussian distribution for large values ofl.

We note also a definite crossover in the scaling in F
3~b!, which is clearly seen as a maximum in the depende
of the sloped ln qL/d ln q on q. The position of this cross
over, qc , is plotted as a function of« in Fig. 4 which sup-
ports a scalingqc;«3/2. This is further support for the sca
ing relation ~18! separating Gaussian and non-Gauss
behavior of LEs.

We emphasize that convergence problems of the num
cal methods, used to solve the eigenvalue problem state
Eq. ~5!, did not allow us to find the asymptotic exponenta
with sufficient accuracy. This is due to the growing size
the matrix (;q) and the strong difference in magnitude
its elements (;q2) for large values ofq.
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V. CONCLUSION

We presented numerical and analytical arguments c
firming a nontrivial distribution of the local Lyapunov expo
nent in the case of the linear noise-driven oscillator~1!. In
order to describe multiscaling, we considered the general
Lyapunov exponentsL(q), which characterize the fluctua
tions of the local LE. With the help of a scaling relation w
were able to represent all the exponentsL(q) as functions of
a renormalized ‘‘energy’’«. A linear form of the generalized
LEs is equivalent to a normal distribution of the loc
Lyapunov exponent which, however, is valid for the nois
driven oscillator only in the limit«→`. To be more precise
the normal distribution is only an approximation in the v
cinity of the mean value. We have found that the parame
range where the linear approximation for the exponentL(q)
is valid depends on the indexq and readsu«u3/2@q. In other
words, the exponential growth of moments^Aq& of qth order
is determined by the Gaussian part of the distribution wit
this parameter range. Our numerical findings in the limitq
@1 suggest a scaling relation ofL(q);qa21. The corre-
sponding exponenta'1.4 describes the probability of larg
deviations of the local LE from its average value via t
Legendre transformation.
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FIG. 4. The crossover lnqc vs ln«. The dashed line has slop
1.47'3/2.
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