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Multiscaling of noise-induced parametric instability
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We describe the statistical properties of growth rates of a linear oscillator driven by a parametric noise. We
show that in general the fluctuations of local Lyapunov exponents are non-Gaussian and demonstrate multi-
scaling. Analytical calculations of the generalized Lyapunov exponents are complemented with approximative
and numerical results; this allows us to identify the parameter range where the deviations from the Gaussian
statistics become important.
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[. INTRODUCTION vature. The growth rate of(t) thus gives an estimate of the
Lyapunov exponent of Hamiltonian chaos.
In spite of recent progress in the studies of noise-induced In all applications the growth rate of the oscillatiox)
dynamics, many simple models elude complete analytical sds of major interest. When this rate describes the growth of

lution. In this paper we investigate the dimensionlesssmall perturbations, as in the last example above, it is under-
random-driven linear oscillator model stood that nearby trajectories evolve with the same realiza-

tion of the noise(see[6] for a detailed discussion of this
problem). This is consistent with the ususal definition of the

X+[E+£(H)]x=0, (&1)=0, Lyapunov exponent, which also gives the correct interpreta-
tion as the inverse of the localization length.
(E()EL))=20%68(t—1"), (1) Generally, one cannot characterize the growth rate with a

single number, so one speaks of multiscaling. This property

can be characterized in a twofold way. On one hand it is
ossible to characterize the fluctuations of the exponential
rowth with the localfinite-time) Lyapunov exponent intro-

with the Gaussian white noisé(t). This simple model,
which is not exactly solvable in the statistical sense, find

applications in various fields of physics. . duced as\ (t)=(2t) "1 In(x*+x%). Then one describes multi-

(1) In the theory of Anderson localization one interprets  ge4jing in terms of the corresponding probability density
as a spatial coordinate; then E@) is the one-dimensional P(\:t). Recently it has been shovji], that for values of
stationary Schrdinger equation for a single particle in @ ¢jose to zero the distribution ok(t) deviates from the
d-correlated potentiaf. The parametek is the energy ei-  Gaussian form, leading to nonvanishing higher cumulants.
genvalue; it can be either positive or negative, where negarhus the usual Lyapunov exponent alone is not sufficient for
tive values correspond to the band gap. Although, strictlystatistical characterization of(t) for large times. This is
speaking, one should consider Ed) with two boundary ~why we treat the problem with the help of generalized
conditions|x|—0 att— =+, the usual approach is to treat Lyapunov exponents, corresponding to the growth rates of
Eq. (1) as an initial-value problem and to look at the growth different moments of the fielg. In the presence of multiscal-
rate of the variablex ast—o (see[1,2,16 for detaily. The ing these growth rates are different, which gives a comple-
growth rate gives the localization length, and fluctuations ofmentary characterization. Our main goal in this paper is to
x(t) are important for the description of conductance fluc-define the range of parameteiso where multiscaling is
tuations in finite samples. essential and to relate the asymptotical scaling of the gener-

(2) In the theory of parametric resonance one assumes trdized exponents to the form of the tails of the density
parametelE to be positive and interprets it as the square ofP(\;1).

the oscillator frequency, whilé describes frequency fluctua- | NiS paper is organized in the following way. In the next
tions. The oscillations(t) grow due to the noisy pump and section we introduce the generalized Lyapunov exponents

the growth rate of different moments is of major interest,2d Perform a time rescaling, which leaves a noise renormal-
ed frequency as the sole relevant parameter. We recall

Usually, the oscillator has linear damping described by the?

. . some known properties of the Lyapunov exponent of the
term 2yx; such an equation canﬁb? transformec; to @yby random oscillator, which we supplement with results for
virtue of the transformatiom—e™ "y, E—E—y~.

. . negative frequencye. The non-Gaussian properties of the
(3) In Refs.[3-5] a geometrical approach to calculation gistribytion of the local Lyapunov exponent are treated in

of the largest Lyapunov exponent in high-dimensionalgec |y, ysing numerical results and some analytical esti-
Hamiltonian systems was suggested. This approach leads {Q;tes

Eq. (1), wherex(t) is the amplitude of a small perturbation,

E is the mean curvature of the potential enefijycan be of II. GENERALIZED LYAPUNOV EXPONENTS

either sign, and ¢ describes chaotic fluctuations of the cur- o
A. Definition of Lyapunov exponents

We start with the definition of quantities that characterize
*Electronic address: rzillmer@stat.physik.uni-potsdam.de the growth of oscillations in our basic model.
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The fluctuations in Eq(l) lead to an exponentialon
average growth of the amplitude A= \x?+Xx?~exp(At).

Because of the similarity to linearized equations for the
growth of small perturbations in chaotic systems, the exp

nent A is called the Lyapunov exponefLE). The local
(finite-time) LE is defined as

A(t)= %'n A(t); )

it converges to the LE as time tends to infinity and is a

self-averaged quantity:

At — A <dIA>
— A={=InA).
AT\ dt

—

Due to fluctuations of (t) the growth rate of the moments

of A generally differs fromA. It is possible to characterize

these fluctuations with the help of the generalized Lyapunov
exponent$8], defined as the growth rates of the moments of

the amplitude:

1 1
L(g)= a lim TIn(Aq(t)). 3

t—oo

This definition includes the usual LE as a special cdse:
=limg_oL(q). Numerically, A is easier to calculate, be-
cause\(t) becomes a nonrandom quantity for largg2].

Generally, allL(q) are different and are necessary to char-
acterize the growth of oscillations, as is discussed below in

Sec. Il C.

B. Analytic expressions for LEs

Remarkably, generalized LEs for=0,2,4,6 ... can be

found analytically(see, e.g.[1,15]).

In the caseq=0 we have the usual LE, which can be

calculated as follows. With the ansatzx/x=d In x/dt one

reduces Eq(1) to the first-order nonlinear Langevin-type

equation

y=-y*~ &b -E.

0 q 0 0
—E 0 g—1 0
202 -2E 0 q-2
0 2x3¢2 —-3E O

PHYSICAL REVIEW E 67, 061117 (2003

Herey, after reaching-e, is reinjected at+-oo, which cor-
responds to a zero crossing vft). The next step is the
application of the Fokker-Planck theory: for the distribution
of y one can write the Fokker-Planck equation and find its

stationary solution(which, of course, is a solution with a
constant probability floy

e7y3/30'27 Ey/UZJ'y eX3/30'2+ Exlo'zd X

—0o0

1
e(y)= NP

R P 43
f X~ U2 x312-Exta*By
0

Averaging(y) using this solution yields the following ex-
pression for the LE:

© 12— x312- Exto?3
o3 J x-'“e dx

o 0

A=(y)=—~

4

< - a3,
f X 1/2e X°/12—EXx/ o dx
0

For q=2,4,6 ... another analytical approach can be
used. Because Ed1) is a linear stochastic equation, the
evolution of the moments of order of the type (x4~ x¥)
leads to a closed linear system of equations. The latter can be
derived as followganother way to derive this system is pre-
sented in[7]). Consider the temporal derivative of the mo-
ment expressed in terms of Ed.):

d : : .
&<qukxk>: (q_ k)<xqfkflxk+l>_ kE<quk+lxk71>

_ k<g(t)xq—k+1)'(k—l>.

The averaging of the last term can be carried out by using the
Furutsu-Novikov formula,

K(EOXITFEE) = —k(k—1)o?(x3 K25 72),

thus establishing a closed system for the evolution ofg¢he
+1 moments(x9~*xX). This system of equations can be
expressed with the help of a sparse matrix

, (5
0 2 0
(1-q)E 0 1
(g—1)go® —qE O

whose eigenvalue with the largest real part determines the exponential growth of the moments qf Byd#efinition (3) the
generalized LE_(q) for eveng is thus equal to this eigenvalue divided dpyfor odd q(x%) # (|x9|) and this approach does not

provide the LE.
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In the simplest case af=2 the generalized LE (2) is a solution of the cubic equatioy+ Ey—0.50°=0:

( 1/3

3

42/3E 42/3E
2-23,213 | 14 1+ - 7 E 3
3043 223\ 3 =
3 4/3 1 4/3 42/3
ag + + g
L(2)= 3043 (6)
, [E] |1 (42’3|E|)3 . E_ 3
——Ccog —arctan -1 if —<——.
\ 3 3 3543 A3 423
|
For largerq one has to find the roots of the corresponding d
polynomial of orderg+ 1 numerically, but this is a straight- f(A\)=gr—qL(q), ﬁqL(QFX- 8

forward task.

C. Multiscaling in terms of LEs

As follows from the analytic expressions for the general-
ized LEs above, they are in general different, which mean
multiscaling. Here we recall the relation between the gener-

The expansion of the entropy function arouner A is f
~(N—A)?/2D, which yields a Gaussian distribution of the
local LE. In the tails, however, deviations from the Gaussian
ill generally appear. In case the Gaussian approximation
olds, higher cumulantsn& 3) vanish:

alized LEs and the fluctuations of the usual LE, which are

described by the probability densif(\;t). Using Eq.(2)
we can writeA(t) =exdt\(t)], thus the cumulant&(t) of
the random process(t) can be related to the moments of
A(t):

[

>

1

qntn
TKn(t)

<A%t>>=<exp[q>x(t>t]>=exp{

Dq

L(q)=A+ > 9)

Then all generalized LEs are fully determined by two coef-
ficients A andD [or, equivalently, byA andL(2)] andthis
situation can be characterized as “monoscaling.” However,
we will show below that for the noise-driven oscillatci)
this holds only for| E|> o2,

The first two cumulants, which correspond to the mean and

the variance ofA(t), respectively, scale for large times as

follows:

Ki(t)=(\ (1)) — A, Ka(t)=([\(t)~A]?) — D/t

t—oo t—oo

with the diffusion constanD. The variance vanishes for

D. Parameter scaling

Before proceeding with the detailed analysis of the LEs,
we explore the scaling dependence on the paramé&ters
The analytical expression@) and (6) suggest the scaling
relation L(q) = o??*f(Eoc~*3). To show that this scaling
holds for all the exponents(q) we perform the time rescal-
ing t=(|E|/o?) 7 in Eq. (1), whereupon it can be written in

larget in accordance with the self-averaging property of thethe following form:

local LE. Hence, by definitioit3), the generalized LE is the
asymptotic cumulant-generating function BfA;t):
* n—1¢n—1
L(g)=lim > ————Kq(t)
tow 1 n!

* qn—1tn—l

D+ lim >, ———— Ky(t).

q
= A+
too 3 n!

5 @

This is just the Taylor expansion &f(q) aroundg=0 with
coefficients related to the cumulants of the local LE.

Now let us demonstrate a more direct connection between

L(g) andP(\;t). Fort>1 the probability density?(\;t) of
the local LE can be written in the scaling form éxpf(\)]
[9,14], where the entropy functiof(\) is connected with
the generalized LE via a Legendre transformafi2iq]:

X+ x=0,

|E| 3/2
07,3> 7(T)

E 3

(n(r)n(7"))=26(r—1").

(10)

The LEs determined by Eq10) obviously depend only on

the parametes=Eo~*3asL(q,¢). Returning back to time
t we have to reset the time scale by multiplying these expo-
nents byo?/|E|; this gives for the LEs

4/3

g
L(q,E,(r)z02/3EL(q,8)502/3|:(q,s).

(11

The essential behavior is presented by the exponeuts);

thus throughout the rest of the paper this quantity is exam-
ined. For simplicity we will omit the tilde in the following;
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relation to previous formulas can be achieved by inseréing This is equivalent to simple Brownian motion with a con-
instead ofEc~*? in the corresponding expressiof® and  stant drift 1/4. Henceu is normally distributed and for the

(6). exponents we have
1
Ill. GAUSSIAN SCALING FOR LARGE VALUES OF |¢| A= Ie L(q):(1+ g)A—>D=A. (19
&

In this section we demonstrate, using approximate meth-
ods, that for largele| the Gaussian approximation to the The last statement is known as single parameter scaling, the
distribution of the local LE or, equivalently, E¢9) holds. distribution of the local LE being determined by its mean
value alone. If one considers the parametric oscillétpas
a continuous approximation to the discrete Anderson model
for large wavelengths, i.e., around the lower band edge, then
For positives a standard transformation to amplitude andnegatives corresponds to the band gap of the Anderson
phase variables can be made: A siny, x=\eAcosy. The  model, the band edge being locate@ &t0. Increasing posi-
equations of motion then become tive ¢ translates to an approach to the band center where
L single parameter scaling is known to exist. This property has
W)= o+ Eg(t)sinzl//, Ad(t) = — %g(t)Aq sin 2y, Egﬁ?lvin_dleg discussed in the context of Anderson localiza

12

A. Large positive values ofe

B. Large negative values ofe

where the equation for the amplitude has been generalized to For negatives one can transform to the eigenvectors of
the equation for itgjth power. Withu=InAthe largest LEis o hoiseless system=Xx+y, Xx= |8|1/2(;(_~9). whereupon

given by the equations of motion become
: . ; & Uz oAy
A={(u)y=- t)sin 24, 13 X=|e|"" X+ ) (x+y),
(W)= 5 =(&vsin2y) (13) B 2oy
where the averaging is accomplished with the stationary dis- . 1 1 -~ ~
tribution of 4. y=—le|"3y~ 2|8|1,2§(t)(X+Y)-

For large positive: the deterministic phase velocitge in
Eqg. (12) dominates over the typical diffusion rates2/Thus For Iarge|e|3’2 the damping (V|8|1/2) off/ dominates over
for ¢¥%>1 the probability density of the phase becomes uni- . _ ~
form in the interval 0,27r] and averaging the corresponding the~flluctuat|ons (~_1/|g|),~‘thusy can be r?eglected gompared
Fokker-Planck equation ovef yields the evolution of the 0 X in the equation forx. Hence the time evolution ol

reduced probability densitg (u,t) [1]: =In[x| is given by
g 1 1 ; 1/2 1
=| — —J.,+ — . u=le + f(t),
Q(U,t) { 48(9U 88auu Q(U,t) | | 2|8|1/2
0.7 e 0.1
0.6 | © ] o5
o 00 | R SN,
05 ¢ g . 0‘;‘6\ ¢
04| " A
_ S =01
03 | El ‘ ¢
- he
021 -0.2
01} >4
0.0 S B T R
-10 -8 -6 -4 -2 0 2 4 6 8 10 -6 5 -4 -3 -2-1 0 1 2 3 4 5 6
(a) c (b) €

FIG. 1. (a) Diffusion constanD as a function of the frequeney, o= 1. The diamonds show the numerical result whereas the solid line
depicts the Gaussian presumptidr:=L(2)— A. (b) Numerical result for the limiting cumulant lim,.K 3 /t?; the dashed line is to improve
readability.
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which again leads to Gaussian distribution of the local LE, 100
the latter given for large times by/t. For the generalized
Lyapunov exponents we obtain

[}

N

A=l L@ =|e2 5o~s]2 5 g

2|e| <

g‘

Here there is no single parameter scaliig) becauseD —é
=A"2. Notice that in both cases;>0 and <0, the 3

asymptotic results are obtained fef¥>>1.

IV. NON-GAUSSIAN FLUCTUATIONS

A. Parameter range of non-Gaussian fluctuations -2 -8 4 0 4 8 12 16 20
We have demonstrated that for laigé the distribution of
local LEs is nearly Gaussian. Next, we would like to show FIG. 2. qL(q) vse for values ofq increasing frong=4 at the
that this does not hold for smak| (see alsd7]), with two bottom toq=20 at the top. The solid_ lines shqw the numerical
numerical tests regarding the second and the third cumularfi€Sult, the dashed lines the parabolic approximatia@). The
Suppose that the local LE is normally distributed. Thenthresholda/|e[**=0.4 is marked by the circles.
the whole set of generalized LEs can be expressed, according

to Eqg. (9), in terms of the analytically known exponents 1 [t
A,L(2): )\t=——J 7)sin 2¢( 7)dr. 1
(2) (t) 2\/;t0§() P(7) (17)
L(g)=A+ b —A+q L(2)—A (16
(@= 2 qa= 2[ ( 1 Because the noise and the phase are coupled according to Eq.

(12), the processé(7)sin2y(7) resembles Gaussian white
In particular, the diffusion consta® equalsL(2)—A and  noise only fors¥2>1, as was shown in the previous section.
the third cumulanK; in expansion(7) vanishes. In terms of the localization theory the poist=0 corre-

In Fig. 1(a) the numerically computed diffusion constant sponds to the band edge, where indeed a complicated behav-
for the noise-driven oscillator is compared with the Gaussiaror of the corresponding distributions is expecféd—13.
assumptior(16), indicating that there are deviations for val-  Taking into account that the limiting resuk$4) and(15)
ues ofe close to zero. The coefficient lim..K5/t? of the  are obtained fofs|*?>1, we assume hypothetically that the
cumulant expansioli7) is plotted in Fig. 1b). It is clearly  relevant scale variable is given by|*? and hence the cu-

different from zero for smalle|. mulants of the densit(\;t) vanish for largee| as
These results suggest that in the intermediate redisfe,
=<1, the linear form oL (q) is not correct. This is elucidated 1\"
by writing the local LE explicitly in terms of amplitude and nw(_) for n=3. (18)
phasd compare Eq(13)]: le|%
10 8 ‘/,
9 r a 7r (/'/
8| /.// 6 ///
£ 7] - £ 5
X 6| 7 < 4 !
3‘” e :]‘: 3t
= 57 e =
© I © 2+
— 47 7 ~ 11 .
3 3] 7 3
= e g 07 /}/
2+ -1 e
1} ) 2t
0 -3
0 1 2 3 4 5 8 7 8 0 1 2 3 4 5 8 7 8
(a) lnq (b) lnq

FIG. 3. IfgL(g)] vs Inq (dot-dashefifor e= —10 (a) and e =10 (b). The solid lines are numerical derivativasin[qL(q)]/dIn g; the
dashed lines correspond to=1.28 anda=1.38, respectively.
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Then the expansiof7) is a power series in the parameter
a/|€|®2 According to this assumption, the generalized LE 57t o
L(q) deviates from the Gaussian val(&) when this pa- 9/@'
rameter is large. 52 |

To test this numerically, we show in Fig. 2 the exact gen- ' &
eralized LEs together with the Gaussian approximatid), o°
as a function ok for several values of the parametgrThe w47 O,/@’
indicated thresholdy/|¢|*?=0.4 well divides the region of 5 o
agreement between the correct value and the approximation 42 L o
from the region where these values strongly disagree, thus o
confirming our hypothesis. a7 | 0

o
B. Asymptotic scaling of generalized LEs ’

In this section we study the asymptotic behavior of gen- 32 2 225 25 275 3 325 35 375 4

eralized LEs for large. This problem can be formulated as Ine

the problem of asymptotic properties of the eigenvalues of
the matrix(5) asq— . We expect the scaling to be a power
law

FIG. 4. The crossover lg. vs Ine. The dashed line has slope
1.47=3/2.

L(g)~g* Y, a(e)e(1,2. (19 V. CONCLUSION

Because the largest element of the matfixscales ag? for Ve presented numerical and analytical arguments con-

largeq,L(q)~q sets an upper limit to the scalif@9). The firming a nontrivial distribution of the local Lyapunov expo-

numerical results presented in Fig. 3 for two values give ~ Nent in the case of the linear noise-driven oscillatr In

a=1.28 fore= —10 anda=1.38 fore = 10. order to describe multiscaling, we considered the generalized
The fact that asymptoticallg<2 means that the tails of Lyapunov exponent& (q), which characterize the fluctua-

the distribution of the local LE are suppressed in comparisofiions of the local LE. With the help of a scaling relation we

to the Gaussian form. Indeed, by virtue of the Legendrewvere able to represent all the exponelnfg) as functions of

transformation(8), the scaling ofL(q) for largeq translates a renormalized “energy%. A linear form of the generalized

into a scaling of the entropy functiof{\) for A>1: LEs is equivalent to a normal distribution of the local

Lyapunov exponent which, however, is valid for the noise-
(20) driven oscillator only in the limit —oc. To be more precise,
the normal distribution is only an approximation in the vi-

. ) ) ) cinity of the mean value. We have found that the parameter

The linear form(16) would givea=2, i.e., a Gaussian fo_rm range where the linear approximation for the exporis(af)

of P(A\;t). Fora<2, howeverf(\) obeys a power law with s yalid depends on the indexand readse|¥%>q. In other

an exponenta/(a—1)>2; i.e., P(\;t) decays faster than \yords, the exponential growth of momexits®) of qth order

the Gaussian distribution for large values\of ~_ is determined by the Gaussian part of the distribution within
We note also a definite crossover in the scaling in Figthis parameter range. Our numerical findings in the lignit

3(b), which is clearly seen as a maximum in the c_iependencgl suggest a scaling relation &f(q)~q*~L. The corre-

of the sloped Ingl/dIng on g. The position of this cross- gponding exponeni~ 1.4 describes the probability of large

over,qc, is plotted as a function of in Fig. 4 which sup-  geviations of the local LE from its average value via the
ports a scaling).~ 2 This is further support for the scal- Legendre transformation.

ing relation (18) separating Gaussian and non-Gaussian
behavior of LEs.

We emphasize that convergence problems of the numeri-
cal methods, used to solve the eigenvalue problem stated by
Eq. (5), did not allow us to find the asymptotic exponent We are grateful to Volker Ahlers and Markus Abel for
with sufficient accuracy. This is due to the growing size offruitful discussions. This work was supported by DFG
the matrix (~q) and the strong difference in magnitude of (Sonderforschungsbereich 555 “Komplexe nichtlineare
its elements € q?) for large values ofj. Prozessey.

— for A>1.
o

N al(a—1)
f(7\)~(a—1)( )
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